On ϕ - Classes of Submodules
Abstract
Let R be a commutative ring with identity and let M be a unitary R-module. Let
S(M) be the set of all submodules of M and :S(M)! S(M) S
f;g be a function. A proper submodule N of M is said to be a -prime (resp. a -primary) submodule if am 2 N-(N) for a 2 R, m 2 M implies that either m 2 N or a 2 (N : M) (resp. a 2 p (N : M)). These concepts were introduced by N. Zamani and M. Bataineh, in this paper, we study the concept of -primary submodule in details. Also, we introduce the concepts of -primal submodules and -2-absorbing submodules.
Keywords
Full Text:
PDFReferences
Anderson, D.D., and Bataineh, M., Generalizatins of prime ideals, Comm. Algebra, Vol. 36, pp 686-696, (2008).
Ashour, A.E., On Weakly primary submodules, Journal of Al Azhar University-Gaza (Natural Sciences), Vol.13, pp 31-40, (2011).
Atani, S.E and Farzalipour, F., On Weakly primary ideals, Georgian Mathematical Journal Volume 12, Number 3, pp 423-429, (2005).
Atani, S.E and Farzalipour, F., On Weakly prime submodules, Tamkang Journal Of Mathematics, Volume 38, Number 3, pp 247-252, (2007)
Atani, S.E. and Darani, A.Y.,Weakly Primal Submodules, Tamkang Journal Of Mathematics, Volume 40, Number 3, pp 239-245, (2009).
Athab, E.A., Prime and Semiprime Submodules, M.Sc. Thesis, College of Science, University of Baghdad, (1996).
Bataineh, M. and Kuhail, S., Generalizations of Primary Ideals and Submodules, Jordan University of Science and Technology,Jordan, Int. J. Contemp. Math. Sciences, Vol. 6, no. 17, pp811 - 824, (2011).
Darani, A.Y., Generalizations of primal ideals in commutative rings, Matematiki Vesnik, Iran, vol. 64(1), pp25-31, (2012).
Darani, A. and Soheilnia, F., 2-Absorbing and Weakly 2-Absorbing Submodule, Thai Journal of Mathematics Volume 9, Number 3, pp 577-584, (2011).
Darani, A.Y., When an Irreducible Submodule is Primary, International Journal of Algebra, Vol. 2, no. 20, pp 995-998, (2008).
Darani, A.Y, Almost Primal Ideals in Commutative Rings, Chiang Mai J. Sci., 38(2), pp 161-165, (2011).
Dauns, J., Primal modules, Communications in Algebra, 25:8, pp 2409-2435, (1997).
Dubey, M. and Aggarwal, P., On 2-Absorbing Submodules over Commutative Rings, ISSN 1995-0802, Lobachevskii Journal of Mathematics, Vol. 36, No. 1, pp. 58-64, (2015).
Khaksari, A., - prime submodule, International Journal of Algebra, Vol. 5, no. 29, pp 1443 - 1449, (2011).
Khashan, H.A., On almost prime submodules, Science Direct, Acta Mathematica Scientia, Vol.32, No.2, pp 645-651, (2012).
Li-min,W., and Shu-xiang, Y., On almost primary submodules, Journal of Lanzhou University (Natural Sciences), Vol. 49 No. 3, (2013).
Lu, C.Pi., Prime Submodules of modules, Comment. Math. Univ. St. Paul, Vol.33 No. 1, pp 61-69, (1984).
Northcott, D.G., Lessons on Rings, Modules, and Multiplicties, Cambridge University Press, (1968).
Sharp, R., Steps in commutative algebra, Cambridge University Press, Cambridge- New York- Sydney, (2000).
Zamani, N., - prime submodule, Glasgow Mathematical Journal, Iran, volume 52, issue 02, pp 253-259, (2010).
Refbacks
- There are currently no refbacks.
Copyright (c) 2017 Journal of Progressive Research in Mathematics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright © 2016 Journal of Progressive Research in Mathematics. All rights reserved.
ISSN: 2395-0218.
For any help/support contact us at editorial@scitecresearch.com, jprmeditor@scitecresearch.com.