Some results on integer cordial graph

Maya Padmini, T. Nicholas

Abstract


An integer cordial labeling of a graph G(V, E) is an injective map f from V to or  as p is even or odd, which induces an edge labeling f*: E → {0, 1} defined by f*(uv) = 1 if f(u) + f(v) ≥ 0 is positive and 0 otherwise such that the number of edges labeled with1and the number of edges labeled with 0 differ atmost by 1. If a graph has integer cordial labeling, then it is called integer cordial graph. In this paper, we introduce the concept of integer cordial labeling and prove that some standard graphs are integer cordial.

Keywords


Cordial labeling, integer cordial labeling.

Full Text:

PDF

References


I.Cahit, Cordial graphs, A weaker version of graceful and harmonious graphs, ArsCombinatoria, 23,1987, pp 201-208.

I.Cahit, Recent results and Open Problems on Cordial graphs, contemporary methods in Graph Theory, R.Bodendrek.(Ed.) Wissenschaftsverlog, Mannheim,1990, pp. 209-230.

I. Cahit , H-Cordial Graphs, Bull.Inst.Combin.Appl; 18 (1996) 87-101.

G.M. Du. Cordiality of complete k- partite graphs and some special Graphs, NeimengguShida. XuebaoZiranKexueHauwen Ban 2 (1997) 9-12.

J.A.Gallian, A dynamic survey of graph labeling, Electron.J.Combin.5 (2000) 1-79.

Y.S. Ho, S.M. Lee, S.S. Shee, Cordial labeling of the Cartesian product and composition of graphs, Ars Combin.29 (1990) 169-180.

Y.S. Ho, S.M. Lee, S.S. Shee, Cordial labeling of unicyclic graphs and generalized Peterson graphs, Congr. Numer 68(1989) 109-122.

M.Hovey, A-Cordial Graphs, Discrete Math.1991 (3), pp 183-194.

F.Harary, Graph Theory, Addison- Wesly, Reading Mass 1972.

W.W.Kirchherr, NEPS Operations on Cordial graphs, Discrete Math.115(1993) 201-209.

W.W.Kirchherr, On the cordiality of certain specific graphs, ArsCombin. 31 (1991) 127 – 138.

W.W.Kirchherr,Algebraic approaches to cordial labeling, Graph Theory, Combinatorics . . .. . ............Algorithms and Applications, Y. Alavi,et.al(Eds.)SIAM, Philadelphia, PA, 1991, pp 294 – 299.

S.Kuo, G.J. Chang, Y.H.H. Kwong, Cordial labeling of mK_nDiscrete math. 169 (1997) 1- 3.

Y.H.Lee , H.M. Lee , G.J.Chang, Cordial labeling of graphs, Chinese J.Math20(1992) 263 – 273.

S.M.Lee, A.Liu, A construction of cordial graphs from smaller cordial graphs, ArsCombin. 32 (1991) 209-214.

E. Seah, On the construction of cordial graphs from smaller cordial graphs, ArsCombin. 31 (1991) 249 – 254.

S.C.Shee,The cordiality of the path – union of n copies of a graph, Discrete Math., 151 (1996) 221-229.

S.C.Shee, Y.S.Ho, The Cardiality of the one-point union of n-copies of a graph, Discrete Math.117 (1993) 225-243.

M.Sundaram, R.Ponrajan, S.Somusundaram, Prime Cordial labelling of graphs, Journal of Indian Academy Of Mathematics, 27(2005) 373 – 393.

A.Unveren and I.Cahit, M-Cordial Graphs, Pre-print

S.K.Vaidya, N.A. Dani, K.K.Kanani, P.L.Vihol, Cordial and 3- Equitable labeling for some star related graphs, International Mathematical Forum, 4, 2009,no.31, 1543-1553.

R.Varatharajan, S.Navaneetha Krishnan, K.Nagarajan, Divisor cordial Graphs, International J. . ......,Math. Combin.Vol 4 (2011)15 – 25.

R.Yilmazand I.Cahit, “E-Cordial graphs”, ArsCombin., Vol 46, pp.251 – 266 , 1997.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2016 Journal of Progressive Research in Mathematics

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright © 2016 Journal of Progressive Research in Mathematics. All rights reserved.

ISSN: 2395-0218.

For any help/support contact us at editorial@scitecresearch.com, jprmeditor@scitecresearch.com.