Some theorem on common fixed points and points of coincidence for mappings in metric space

Andrzej Mach

Abstract


The paper includes theorem giving the sucient condition for existence of
common point of coincidence and common fixed point for 2n + 1 mappings in
metric space.


Keywords


Fixed point; point of coincidence; weakly compatible mappings; contraction; Banach fixed point theorem; Kannan type condition.

Full Text:

PDF

References


M. Arshad, A. Azam, P. Vetro, Some common fixed point results in

cone metric spaces, Fixed Point Theory Appl., 2009 (2009), Article ID

,11 pages.

A. Azam, I. Beg, Kannan type mapping in its TVS-valued cone metric

space and their applications to Uryshon integral equations, Sarajevo Journal of Mathematics, Vol 9 (22) (2013), 243-255.

S. Banach, Sur les opération dans l'ensembles abstraits et leur application aux équations intégrales, Fundam. Math., 3 (1922), 133-181.

J. Dugundji and A. Granas, Fixed Point Theory, Monograe Matematyczne, Tom 61 vol. I, PWN- Polish Scientic Publishers (1982).

J. Jachymski, Common fixed point theorems for some families of mappings, Indian J. Pure Appl. Math. 25 (1994), 925-937.

K. Jha, R. P. Pant, S. L. Singh, Common xed points for comapatible

mappings in metric spaces, Radovi Matemati£ki, vol. 12 (2003), 107-114.

R. Kannan, Some results on fixed points II, Am. Math. Mon. 76(4) (1969), 405-408.

R. P. Pant, P. C. Joshi, V. Gupta, A Meir-Keeler type xed point theorem, Indian J. Pure Appl. Math. 32(6) (2001), 779-787.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2016 Journal of Progressive Research in Mathematics

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright © 2016 Journal of Progressive Research in Mathematics. All rights reserved.

ISSN: 2395-0218.

For any help/support contact us at editorial@scitecresearch.com, jprmeditor@scitecresearch.com.