On The Diophantine Equation ∑▒x_i^2+a=y^2 〗And ∑▒〖x_i^3+a=y^3 〗

Hari Kishan

Abstract


In this paper, the Diophantine equations ∑𝒙𝒊𝟐+𝒂=𝒚𝟐 and ∑𝒙𝒊𝟑+𝒂=𝒚𝟑 where 𝑥1≠𝑥2≠𝑥3≠⋯ and a is a positive integer have been discussed for possible positive integral solutions.


Keywords


Diophantine equation and integral solution.

Full Text:

PDF

References


Andrew Wiles (1995): Modular elliptic curve and Fermat’s Last Theorem. Annals of Mathematics, 141(3), 443-551.

Beals (1993):

Fermat (1637): Margin of a copy of Mathematica.

Gandhi & Sarma (2013): The Beal’s Conjecture (Disproved). Bull. Soc. Math. Ser. & Stand. Vol. 2(2), 40-43.

Ghanochi, J. (2014): An Elementary Proof of Fermat-Wiles Theorem and Generalization to Beal conjecture. Bull. Soc. Math. Ser. & Stand. Vol. 3(4), 4-9.

Gola, L.W. (2014): The Proof of the Beal’s Conjecture. Bull. Soc. Math. Ser. & Stand. Vol. 3(4), 23-31.

Gregorio, L.T.D. (2013): Proof for the the Beal’s conjecture and a new proof for the Fermat’s last theorem. Pure & Appl. Math. Jour. Vol. 2(5), 149-155.

Thiagrajan, R.C. (2014): A proof of Beal’s conjecture. Bull. Math. Sci. & Appl. Vol. 3(2), 89-93.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2016 Journal of Progressive Research in Mathematics

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright © 2016 Journal of Progressive Research in Mathematics. All rights reserved.

ISSN: 2395-0218.

For any help/support contact us at editorial@scitecresearch.com, jprmeditor@scitecresearch.com.