Solutions for the fractional partial differential coupled sine-Gordon equation with Homotopy analysis method and the modified decomposition method

Mohammed K. Elboree, A. M. Yousef, S. Z. Rida

Abstract


In this paper, we solved the coupled sine-Gordon equation of fractional order. The fractional derivatives are described in the Caputo sense. The methods are homotopy analysis method (HAM) and modified decomposition method (ADM). We use the numerical simulation to compare these solutions.

Keywords


Coupled sine-Gordon; Modified decomposition method; Fractional calculus; Homotopy analysis method.

Full Text:

PDF

References


S.J.Liao, The proposed homotopy analysis technique for the solution of nonlinproblems, ph.D. Thesis, Shanghai Jiao Tong University, 1992.

S.J.Liao, Beyond perturbation: introduction to the homotopy analysis method, Chapman & Hall/ CRC press, Boca Raton, 2003.

Jafari H, Seifi S, Homotopy analysis method for solving linear and nonlinear fractional diffusion-wave equation. Common Nonlinear Sci Numer Simulat, 2009.

Liao S.J, The proposed homotopy analysis technique for the solution of nonlinear problems, PhD thesis, Shanghai Jiao Tong University, 1992.

Liao S.J, An approximate solution technique which does not depend upon small parameters: a special example. Int J Nonlinear Mech 1995.

Liao S.J, Beyond perturbation: introduction to the homotopy analysis method, Boca Raton: CRC press, Chapman&Hall 2003.

Liao S.J, Homotopy analysis method: a new analytical technique for nonlinear problems. Commun Nonlinear Sci Numer Simulat, 1997.

Z. Abbas, M. Sajid, T. Hayat, MHD boundary layer flow of an upper-convected Maxwell fluid in a porous channel, Theor.Comput.Fluid Dyn.20 (2006) 229-238.

S.Abbasbandy, The application of homotopy analysis method to nonlinear equations arising in heat transfer, Phys. Lett. A 360 (2006) 109-113.

S.Abbasbandy, The application of homotopy analysis method to solve a generalized Hirota-Satsuma coupled Kdv equation, Phys. Lett. A 361 (2007) 478-483.

T. Hayat, M. Khan, Homotopy solutions for a generalized second-grade fluid past a porous plat, Nonlinear Dyn. 42 (2005) 395-405.

T. Hayat, M. Khan , M. Ayub, On non-linear flows with slip boundary condition, ZAMP 56 (2005) 1012-1029.

T. Hayat, F.Shahzad, M. Ayub, Analytical solution for the steady flow of the third grad fluid in a porous half space, Appl. Math. Model. 31 (2007) 243-250.

T. Hayat, Z. Abbas, M.Sajid, Series solution for the upper-convected Maxwell

fluid over a porous stretching plate, Phys. Lett. A 358 (2006) 396-403.

T. Hayat, R. Ellahi.P.D. Ariel, S.Asghar, Homotopy solution for the channel flow of a third grade fluid, Nonlinear Dyn. 45 (2006) 55-64.

T. Hayat, M. Khan, M. Sajid, M.Ayub, Steady flow of an oldroyd 8-constant fluid between coaxial cylinders in a porous Media 9 (2006) 709-722.

T. Hayat, R. Ellahi, S. Asghar, The influence of variable viscosity and viscous dissipation on the non-Newtonian flow: An analytical solution, Comm. Nonlinear Sci. Numer. Simulation 12 (2007) 300-313.

T. Hayat, M. Sajid, Analytic solution for axisymmetric flow and heat transfer of a second grade fluid past a stretching sheet, Int. J. Heat Mass Transfer 50 (2007) 75-84.

T. Hayat, Z. Abbas, M.Sajid, S. Asghar, The influence of thermal radiationom MHD flow of a second grade fluid, Int. J. Heat Mass Transfer 50 (2007) 931-941.

M. Sajid, T. Hayat, S. Asghar, On the analytic solution of the steady flow of a forth grade fluid, Phys. Lett. A 355 (2006) 18-26.

M. Sajid, T. Hayat, S. Asghar, Non-similar analytic solution for MHD flow and heat transfer in a third-order fluid over a stretching sheet, Int. J. Heat Mass Transfer 50 (2007) 1723-1736.

Y. Tan, S. Abbasbandy, Homotopy analysis method for quadratic Riccati differential equation, Commun. Nonlinear Sci. Numer. Simul. 13 (2008) 539-546.

Bataineh, As, Alomari, Ak, Noorani, MSM, Hashim, I, Nazar, R: Series solutions of systems of nonlinear fractional differential equations. Acta Appl.Math.105 (2009) 189-198.

Xu, H,Liao, S-J, You, X-c: Analysis of nonlinear fractional partial differential equations with the homotopy analysis method . Commun. Nonlinear Sci. Numer. Simul. 14(4), (2009) 1152-1156.

Adomian G. Nonlinear stochastic systems theory and applications to physics. Netherlands: Kluwer Academic Publishers; 1989.

Adomian G. Solving frontier problems of physics: Boston:Kluwer Academic Publishers; 1994.

Wazwaz AM. Partial Differential Equations: Methods and Applications. Rotterdam:Balkema; 2002.

Adomian G. An analytical solution of the stochastic navier-stokes system. Physics 1991; 21(7):831-43.

Adomian G. Rach R. Linear and nonlinear Schrodinger equations. Phys 1991; 21: 983-91.

Adomian G. Solution of physical problems by decomposition. Comput Math Appl 1994; 27 154-54.

K.R.Khusnutdinova, D.E. Pelinovvsky, On the exchange of energy in coupled Klein-Gordon equations, Wave Motion 38 (2003) 1-10.

T.A.Kontorova, Ya.I.Frenkel, On the theory of plastic deformation and twining I, II, Zh.Eksp. Teor. Fiz.8 (1938) 89-95, 1340-1368.

O.M.Braun, Yu.S.Kivshar, Nonlinear dynamics of the Frenkel-Kontorova model, Phys.Rep. 306 (1998) 1-108.

S.Yomosa, Soliton excitations in deoxyribonucleic acid (DNA) double helices, Phys. Rev.A 27 (1983) 2120-2125.

A. Wazwaz, A reliable modification of Adomian decomposition method, Apple. Math. Comput. 102 (1) (1999) 77-86.

G. Adomian, Solving Frontier problems of physics: Decomposition method, Kluwer Academic, publishers, Boston, 1994.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2016 Journal of Progressive Research in Mathematics

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright © 2016 Journal of Progressive Research in Mathematics. All rights reserved.

ISSN: 2395-0218.

For any help/support contact us at editorial@scitecresearch.com, jprmeditor@scitecresearch.com.