Some New Discrete Inequalities of Opial and Lasota's Type

Hsu Kai-Chen, Kuei-Lin Tseng

Abstract


In this paper, we establish some new discrete inequalities of Opial
and Lasota?s type which reduce to some inequalities in [4].


Keywords



Full Text:

PDF

References


R. P. Agarwal and P. Y. H. Pang, Opial inequalities with application in differential and difference equations, Kluwer Academic Publishers (1995).

D. Bainov and P. Simeonov, Integral Inequalities and Applications, Kluwer Academic Publishers (1992).

L.-K. Hua, On an inequality of Opail, Scientia Sinica 14 (1965), 789-790.

A. Lasota, A discrete boundary value problem, Ann. Polon. Math. 20 (1968), 183-190.

J. Myjak, Boundary value problems for nonlinear differential and difference equations of the

second order, Zeszyty Nauk. Univ. Jagiellonsi, Prace Math. 15 (1971), 113-123

C. Olech, A simple proof of a certain result of Z. Opial, Ann. Polon. Math. 8 (1960), 61-63.

Z. Opial, Sur une inegalite, Ann. Polon. Math. 8 (1960), 29-32.

B. G. Pachpatte, On Opial like discrete inequalities, An. Sti. Univ. A1. I. Cuza Iasi, Mat. 36

(1990), 237-240.

B. G. Pachpatte, A Note on Opial Type Finite Difference Inequalities, Tamsui Oxford J. Math. Sci. 21(1) (2005), 33-39.

J. S. W. Wong, A discrete analogue of Opial?s inequality, Canadian Math. Bull. 10 (1967), 115-118.

G.-S. Yang, On a certain result of Z. Opial, Proc. Japan Acad. 42 (1966), 78-83.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2015 Journal of Progressive Research in Mathematics

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright © 2016 Journal of Progressive Research in Mathematics. All rights reserved.

ISSN: 2395-0218.

For any help/support contact us at editorial@scitecresearch.com, jprmeditor@scitecresearch.com.