Fourier Coefficients of a Class of Eta Quotients of Weight 12 with Level 12

Bariş Kendirli

Abstract


Recently, Williams and then Yao, Xia and Jin discovered explicit formulas for the coefficients of the Fourier series expansions of a class of eta quotients. Williams expressed all coefficients of 126 eta quotients in terms of ?(n),?((n/2)),?((n/3)) and ?((n/6)) and Yao, Xia and Jin, following the method of proof of Williams, expressed only even coefficients of 104 eta quotients in terms of ??(n),??((n/2)),??((n/3)) and ??((n/6)).Here, we will

express the even Fourier coefficients of 2 eta quotients i.e., the Fourier coefficients of the sum, f(q)+f(-q), of 2 eta quotients in terms of ??(n),??((n/2)),??((n/3)),??((n/4)),??((n/6)),??((n/(12))),???(n),???((n/2)),
???((n/3)),???((n/4)),???((n/6)),???((n/(12))),?(n)(tau function),?((n/2)),?((n/3)),?((n/4)),?((n/6)),?((n/(12)))
and the odd Fourier coefficients of 393 eta quotients in terms of ??(n),??((n/2)),??((n/3)),??((n/4)),??((n/6)),??((n/(12))),???(n),???((n/2)),
???((n/3)),???((n/4)),???((n/6)),???((n/(12))),?(n),?((n/2)),?((n/3)),?((n/4)),?((n/6)),?((n/(12))) and f??,?,f??.


Keywords


Dedekind eta function; eta quotients; Fourier series.

Full Text:

PDF

References


A.Alaca, S.Alaca and K. S. Williams, On the two-dimensional theta functions of Borweins, Acta Arith. 124 (2006)

-195.

_________, Evaluation of the convolution sums l m l m n    12 = and    , 3 4 =l ml m n     Adv. Theor. Appl. Math. 1(2006), 27-48.

B.Gordon, Some identities in combinatorial analysis, Quart. J. Math. Oxford Ser.12 (1961), 285-290.

B. Gordon and S. Robins, Lacunarity of Dedekind

 -products, Glasgow Math. J. 37 (1995), 1-14.

F. Diamond, J. Shurman, A First Course in Modular Forms,Springer Graduate Texts in Mathematics 228

V. G. Kac, Infinite-dimensional algebras, Dedekind's

 -function, classical Möbius function and the very strange

formula, Adv. Math. 30 (1978) 85-136.

B. Kendirli, "Evaluation of Some Convolution Sums by Quasimodular Forms", European Journal of Pure and

Applied Mathematics ISSN 13075543 Vol.8., No. 1, Jan. 2015, pp. 81-110

B. Kendirli, "Evaluation of Some Convolution Sums and Representation Numbers of Quadratic Forms of

Discriminant 135", British Journal of Mathematics and Computer Science, Vol6/6, Jan. 2015, pp. 494-531.

B. Kendirli, Evaluation of Some Convolution Sums and the Representation numbers, ArsCombinatorica Volume

CXVI, July, pp 65-91.

B. Kendirli, Cusp Forms in

 79 S4 0

and the number of representations of positive integers by some direct

sum of binary quadratic forms with discriminant -79, Bulletin of the Korean Mathematical Society Vol 49/3 2012

B. Kendirli, Cusp Forms in

 47 S4 0

and the number of representations of positive integers by some direct

sum of binary quadratic forms with discriminant -47,Hindawi , International Journal of Mathematics and

Mathematical Sciences Vol 2012, 303492 10 pages

B. Kendirli, The Bases of M  71,

0 M  71 6 0

and the Number of Representations of Integers, Hindawi,

Mathematical Problems in Engineering Vol 2013, 695265, 34 pages

G. Köhler, Eta Products and Theta Series Identities (Springer-Verlag, Berlin, 2011).

I. G. Macdonald, Affine root systems and Dedekind's

 -function, Invent. Math. 15 (1972), 91-143.

Olivia X. M. Yao, Ernest X. W. Xia and J. Jin, Explicit Formulas for the Fourier coefficients of a class of eta

quotients, International Journal of Number Theory Vol. 9, No. 2 (2013) 487-503.

I. J. Zucker, A systematic way of converting infinite series into infinite products, J. Phys. A 20 (1987) L13-L17.

________,Further relations amongst infinite series and products:II. The evaluation of three-dimensional lattice

sums, J. Phys. A23 (1990) 117-132.

K. S. Williams, Fourier series of a class of eta quotients, Int. J. Number Theory 8 (2012), 993-1004.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2015 Journal of Progressive Research in Mathematics

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright © 2016 Journal of Progressive Research in Mathematics. All rights reserved.

ISSN: 2395-0218.

For any help/support contact us at editorial@scitecresearch.com, jprmeditor@scitecresearch.com.