Some Numerical Techniques For Solving Nonlinear Fredholm-Volterra Integral Equation

Abeer AL-Bugami, J. G. Al-Juaid

Abstract


in this paper, the existence and uniqueness of the solution of nonlinear Fredholm-Volterra integral equations is consider (NF-VIE) with continuous kernel, then we use a numerical method to reduce this type of equation to a system of Fredholm integral equation.Trapeziodal rule, Simpson rule,and Romberg integral
method are used to solve the Fredholm integral equation of the second kind with continuous kernel. The error
in each is calculated.


Keywords


nonlinear Fredholm -Volterra integral equation;system of nonlinear Fredholm integral equations; Trapezoidal Rule;Simpson's Rule; Romberg Integration

Full Text:

PDF

References


A.J. Jerri, Introduction to Integral Equations with Applications, John Wiley and Sons, INC(1999).

R. Kress, Linear Integral Equations, Springer Veriag, New York, Inc( 1989).

R.P. Kanwal, Linear Integral Equations Theory and Technique, Boston, 1996.

K.E. Atkinson, A Survey of Numerical Method for the Solution of Fredholm Integral Equation of the Second Kind, Philadelphia, 1976.

C.T.H. Baker, H.Georey, F. Miller, Treatment of Integral Equations by Numerical Methods, Acad. Press, 1982.

L.M. Delves and J.Walsh, Numerical Solution of Integral Equations, Clarendon Press, Oxford, 1974.

M.A. Abdou, Fredholm-Volterra integral equation of the rst kind and contact problem, Apple. Math. comput.125(2002)177-193.

M.A. Abdou, Fredholm-Volterra integral equation and generalized potential kernel, Apple. Math. Comput, 13(2002)81-94.

M. A. Abdou, On asymptotic method for Fredholm-Volterra integral equation of the second kind in contact problems. J.comp.Appl.Math. 154(2003)431-446.

M.A.Abdou, Fredholm-Volterra integral equation with singular kernel, Apple.Math. Comput. 137(2003) 231-243.

F.A. Hendi, A.M. Albugami, Numerical solution for Fredholm-Volterra integral equation of the second kind by using collocation and Galerkin methods, J.KSU(Science)(2010)22,37-40.

M.A. Abdou, K.l.Mohamed and A.S. Ismail, On the numerical Solutions of Fredholm-Volterra integral equation, J. Appl. Math. comput, 146(2003)713-728.

M. A. Abdou and F.A. Hendi, Numerical solution for Fredholm integral equation with Hilbert kernel, J.KSIAm. Vol(9), No.1, 111-123,2005.

H. Guoqiang, Asymptotic error expansion for the Nystrom method for a nonlinear Volterra-Fredholm integral equation, J. Comput. Math.Appl.59(1955)49-59.

H. Du, M. Cui, A method of solving nonlinear mixed Volterra-Fredholm integral equation, Appl. Math. Sci., 1(2007)2505-2516.

K. Maleknejad, B. Rahimi, Medication of block pulse functions and their appliction to solve numerically Voiterra integral equation of the rst kind. Commun. Nonlin. Sic. Numer. Simu., 16(2011)2469-2477.

A. Cardone, E. Messina, E. Russo, A fast iterative method for discretized Volterra-Fredholm integral eqquations, J. Comput.Appl.Math.,189(2006)568-579.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Journal of Progressive Research in Mathematics

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright © 2016 Journal of Progressive Research in Mathematics. All rights reserved.

ISSN: 2395-0218.

For any help/support contact us at editorial@scitecresearch.com, jprmeditor@scitecresearch.com.