METRIC EQUIVALENCE AS AN ALMOST SIMILARITY PROPERTY
Abstract
Keywords
Full Text:
PDFReferences
Campbell, S. L., & Gellar, R. (1977). Linear operators for which T*T and T+T commute II. Trans. of the Amer. Math. SOC, 226, 305-319.
Dragomir, S. S. (2007). Inequalities for normal operators in Hilbert spaces. Appl.Anal.DescreteMath, 1, 92-110.
Jibril, A. A. (1996). On Almost similar operators. Arabian J. Sci. Engrg, 21, 443-449.
Kubrusly , C. S. (1997). An introduction to models and decomposition in operator theory. Birkhauser: . Boston: Birkhauser.
Musundi, S. W., Sitati, N. I., Nzimbi, B. M., & Murwayi, A. L. (2013). On almost similarity operator equivalence relation. IJRRAS, 15(3), 293-299.
Nzimbi, B. M., Pokhariyal, G. P., & Khalaghai, J. M. (2008). A note on similarity, almostsimilarity and equivalence of operators. FJMS, 28(2), 305-319.
Nzimbi, B. M., Pokhariyal, G. P., & Moindi, S. K. (2013). A Note on metric equivalence of some operators. Far East .J. of Math.Sci, 75(2), 301-318.
Rudin, W. (1991). Functional Analysis (2 ed.). Boston: McGraw-Hill.
Sitati, I. N., Musundi, S. W., Nzimbi, B. M., & Kirimi, J. (2012). On similarity and quasisimilarity equivalence relation. BSOMASS, 1(2), 151-171.
Refbacks
- There are currently no refbacks.
Copyright (c) 2017 Journal of Progressive Research in Mathematics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright © 2016 Journal of Progressive Research in Mathematics. All rights reserved.
ISSN: 2395-0218.
For any help/support contact us at editorial@scitecresearch.com, jprmeditor@scitecresearch.com.