Multiple solutions for a kind of periodic boundary value problems via variation approach

Li Zhang, Nao Li, Yujie Xu, Qian Xu, Chong Li

Abstract


In this paper, the existence of at least two solutions for periodic boundary value problems is obtained by the critical point theory. The interest is that the nonlinear term includes the first-order derivative and may not satisfy the classical Ambrosetti-Rabinowitz condition.

Keywords


p-laplacian, boundary value problem, variational, periodic solution

Full Text:

PDF

References


W.Ding, M.Han, J.Yan, Periodic boundary value problems for the second order functional differential equations, J.Math.Anal.Appl,298(2004)341-351.

H.Wang,Positive periodic solutions of functional differential equations,J.Differential Eqns. 202(2004)354-366.

J.Mawhin, M.Willen. Critical Point Theorem and Hamiltonian Systems. Appl. Math. Sci., Vol. 74, Springer, New York; 1989.

P.Rabinowitz, Periodic solutions of hamiltonian systems, Comm. Pure Appl. Math. 31(1978):157-184.

Ricceri B.: On a three critical points theorem, Arch. Math. 75,220-226(2000).

E.Zeidler, Nonlinear Functional Analysis and its Application, Vol.3, Springer,1985.

Giovanna Cerami.: An existence criterion for the critical points on unbounded manifolds. Istit. Lombardo Accad. Sci. Lett. Rend. A, 112(2)(1979):332-336,1978.

AfrouziG.A.,Heidarkhani S.: Three solutions for a quasilinear boundary value problem, Nonlinear Anal.69,3330-3336(2008).

Y.Tian, W.Ge. Multiple positive solutions for periodic boundary value problem via vatiational methods. Tamkang J. Math., 39(2008):111-119.

A.Ambrosetti, P.H.Rabinowitz. Dual variational methods in critical point theory and applications. J.Funct.Anal. 14(1973):349-381.

Siegfried Carl, Dumitru Motreanu. Constant-sign and sign-changing solutions for nonlinear eigenvalue problems. Nonlinear Anal.,68(2008):2668-2676.

Michael E.Filippakis, Nikolaos S.Papageorgiou. Multiple constant sign and nodal solutions for nonlinear elliptic with the p-Laplacian. J.Differential Equations. 245(2008):1883-1922.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Journal of Progressive Research in Mathematics

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright © 2016 Journal of Progressive Research in Mathematics. All rights reserved.

ISSN: 2395-0218.

For any help/support contact us at editorial@scitecresearch.com, jprmeditor@scitecresearch.com.