The Banach Fixed Point Theorem for mappings in general (< R,Ro >,φ)-spaces

Andrzej Mach

Abstract


The paper includes theorem giving the sufficient condition to the existence ofa fixed point for mappings in arbitrary set equipped with the the family of binaryreflexive and symmetric relations satisfying some conditions. The result obtainedis a generalization of the main theorem from [7].Â

Keywords


Fixed point, binary relation, φ-transitivity, contraction, Banach fixed point theorem, (R,φ)-space, general (< R;R0 > φ)-space, < R;R0 >-contraction.

Full Text:

PDF

References


S. Banach, Sur les opération dans l'ensembles abstraits et leur application aux équations intégrales, Fundam. Math. 3 (1922), 133-181.

J. Dugundji and A. Granas, Fixed Point Theory, Monograe Matematyczne, Tom 61 vol. I, PWN- Polish Scientic Publishers (1982).

S. K. Chatterjea, Fixed-points theorems, C. R. Acad. Bulgare Sci.,

(1972), 727-730.

J. Jachymski, Common fixed point theorems for some families of mappings, Indian J. Pure Appl. Math., 25 (1994), 925-937.

K. Jha, R. P. Pant, S. L. Singh, Common xed points for comapatible

mappings in metric spaces, Radovi Matemati£ki, vol. 12 (2003), 107-114.

R. Kannan, Some results on xed points II, Am. Math. Mon., 76(4) (1969), 405-408.

A. Mach, A generalization of Banach Fixed Point Theorem for mappings in (R; ')-spaces, International Mathematical Forum, Vol. 10, 2015, no. 12, 579-585.

A. Mach, Some theorem on common xed points and points of coincidence for mappings in metric space, Journal of Progressive Research in Mathematics, Vol.7 No 1, (2016), 892-898.

A. Mach, Chaterjea type condition for existence of common xed point

for 2n + 1 mappings in metric space, Journal of Progressive Research in

Mathematics, Vol.7 No 4, (2016), 1102-1108.

R. P. Pant, P. C. Joshi, V. Gupta, A Meir-Keeler type fixed point theorem, Indian J. Pure Appl. Math., 32(6) (2001), 779-787.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Journal of Progressive Research in Mathematics

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright © 2016 Journal of Progressive Research in Mathematics. All rights reserved.

ISSN: 2395-0218.

For any help/support contact us at editorial@scitecresearch.com, jprmeditor@scitecresearch.com.