The Banach Fixed Point Theorem for mappings in general (< R,Ro >,φ)-spaces
Abstract
Keywords
Full Text:
PDFReferences
S. Banach, Sur les opération dans l'ensembles abstraits et leur application aux équations intégrales, Fundam. Math. 3 (1922), 133-181.
J. Dugundji and A. Granas, Fixed Point Theory, Monograe Matematyczne, Tom 61 vol. I, PWN- Polish Scientic Publishers (1982).
S. K. Chatterjea, Fixed-points theorems, C. R. Acad. Bulgare Sci.,
(1972), 727-730.
J. Jachymski, Common fixed point theorems for some families of mappings, Indian J. Pure Appl. Math., 25 (1994), 925-937.
K. Jha, R. P. Pant, S. L. Singh, Common xed points for comapatible
mappings in metric spaces, Radovi Matemati£ki, vol. 12 (2003), 107-114.
R. Kannan, Some results on xed points II, Am. Math. Mon., 76(4) (1969), 405-408.
A. Mach, A generalization of Banach Fixed Point Theorem for mappings in (R; ')-spaces, International Mathematical Forum, Vol. 10, 2015, no. 12, 579-585.
A. Mach, Some theorem on common xed points and points of coincidence for mappings in metric space, Journal of Progressive Research in Mathematics, Vol.7 No 1, (2016), 892-898.
A. Mach, Chaterjea type condition for existence of common xed point
for 2n + 1 mappings in metric space, Journal of Progressive Research in
Mathematics, Vol.7 No 4, (2016), 1102-1108.
R. P. Pant, P. C. Joshi, V. Gupta, A Meir-Keeler type fixed point theorem, Indian J. Pure Appl. Math., 32(6) (2001), 779-787.
Refbacks
- There are currently no refbacks.
Copyright (c) 2017 Journal of Progressive Research in Mathematics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright © 2016 Journal of Progressive Research in Mathematics. All rights reserved.
ISSN: 2395-0218.
For any help/support contact us at editorial@scitecresearch.com, jprmeditor@scitecresearch.com.