A Novel Proof based on the method of infinite descent for Fermat’s Last Theorem

Ling Cai, Songlin Chen, Qing Zhang

Abstract


Fermat’s Last Theorem is that for each  k 3  (k is an integer), the equation  involving x, y and z has no positive integer solution. This paper proposed a novel proof for the Fermat’s last theorem by the methods of infinite descent and complex variable analysis.


Keywords


Fermat’s Last Theorem; elementary proof; the method of infinite descent

Full Text:

PDF

References


H. Edwards 1977.Fermat's Last Theorem: A Genetic Introduction to Algebraic Number theory.

Springer-Verlag, New York

A.Wiles(1995). Modular elliptic curves and Fermat's Last Theorem. Ann. Math. ,141,443-551.

A.Wiles & R.Taylor(1995). Ring theoretic properties of certain Heche algebras. Ann. Math., 141,553-573.

M. Beck, G. Marchesi, D. Pixton, L. Sabalka 2002. A First Course of Complex Analysis.

Orthogonal Publishing

J.E. Joseph(2016).Proofs of Fermat's Last Theorem and Beal's Conjecture. JPRM, 10,1446-1447.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Journal of Progressive Research in Mathematics

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright © 2016 Journal of Progressive Research in Mathematics. All rights reserved.

ISSN: 2395-0218.

For any help/support contact us at editorial@scitecresearch.com, jprmeditor@scitecresearch.com.