Analytic Solution of Dirac Equation for Extended Cornell Potential Using the Nikiforov-Uvarov Method

M. Abu-Shady

Abstract


The extended Cornell potential which the harmonic oscillator potential is included in the orig-
inal Cornell potential. The Dirac equation is solved by reducing the Dirac equation to the form
of Schrodinger equation. The Nikiforov-Uvarov method is applied to obtain the energy eigen-
values and corresponding wave functions. The obtained results are important to calculate many
characteristics of fermion relativistic particles.


Keywords


Dirac equation, Nikiforov-Uvarov method, Cornell potential

Full Text:

PDF

References


A. D. Alhaidari, H. Bahlouli, and A. Al-Hasan, Phys. Lett. A 349, 87 (2006).

L. A. Trevisan, Carlos Mirez, and F. M. Andrade, Few-body Syst. 55 1055 (2014).

H. Hassanabadi, E. Maghsoodi, Akpan N. Ikot, and S. Zarrinkamar, Adv. High Energ.

Phys. 2014, 831938 (2014).

A. N. Ikot, E. Maghsoodi, O. A. Awoga, S. Zarrinkamar, H. Hassanabadi, Quant.

Phys. Lett. 3, 7 (2014).

M. Hamzavi and A. A. Rajabi, Chinese Phys. C 37, 103102 (2013).

M. Hamzavi, H. Hassanabadi, and A. A. Rajabi, Inter. J. Mod. Phys. E, 19, 2189

(2010).

H. Xian-Quen, L. Guoug, W. Yhi-Min, N. Lion-Bin, and M. Yan. Commun. Theor.

Phys. 53, 242 (2010).

A. Arda, R. Sever, and C. Tezcan, Cent. Eur. J. Phys. 8, 843 (2010).

Af. Nikiforov Uvarov, "Special Functions of Mathematical Physics" Birkhauser, Basel

(1988).

S. M. Kuchin and N. V. Maksimenko, Univ. J. Phys. Appl. 7, 295 (2013).

R. Kumar and F. Chand, Commun. Theor. Phys. 59, 528 (2013).

P. Gupta and I. Mechrotra, J. Mod. Phys. 3, 1530 (2012).


Refbacks

  • There are currently no refbacks.


Copyright (c) 2015 Boson Journal of Modern Physics

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright. 2016 Boson Journal of Modern Physics. All rights reserved.

ISSN: 2454-8413.

For any help/support contact us at editorial@scitecresearch.com.