Inhomogeneous Density and Energy Spectrum of Elementary Excitations of Electron Liquid of Conductors in Magnetic Field

Illia Dubrovskyi

Abstract


It is shown that the conventional theory of electron liquid in a magnetic field is based on the model that is incorrecting mathematically and contradicting to experiments. On the foundation of statistical mechanics that takes into account angular momentum conservation law is obtained the effective Hamiltonian of the electron liquid in a magnetic field that includes the quasielectrostatic potential proportional to the square of the magnetic field. As result, the electron liquid is inhomogeneous, and together with the homogeneous neutralizingbackground generates an electrostatic potential. The sum of these potentials is the residual potential that forms an energetically spectrum of elementary excitations of the electron liquid in the homogeneousmagnetic field. This spectrum is quasicontinuous, and itsbeginning issomewhat higher than the value of the potential energy at the boundary. The graph of the dependence of the density of states on energy has the form of a staircasewith horizontal steps.The density of states in the mean is proportional to the square root from energy.

Keywords


Statistical operator; effective Hamiltonian; electron liquid; energy functional; inhomogeneous density; residual potential; elementary excitation; density of states.

Full Text:

PDF

References


Landau, L.D. Zs. Phys., 64: 629 (1930).

Landau, L. D.&Lifshitz, E. M. Quantum mechanics. Nonrelativistic theory, Pergamon Press, New York.

Dubrovskyi I., Journal of Physical Science and Application 4 (5) pp 328-332 (2014).

Johnson M. H., Lippmann B. A., Phys. Rev. 76: 828 (1949).

R. Courant, D. Hilbert, Methods of Mathematical Physics, Vol. 1, Interscience, New York (1953).

A. Erdélyi, Higher Transcendental Functions, based, in part, on notes left by Harry Bateman, Vol. 1,McGraw-Hill book company, INC, New York Toronto London (1953).

I. Dubrovskyi, Condensed Matter Physics, 9: 645 (2006).

Lifshits, I. M., Azbel, M. Y. &Kaganov, M. I. Electron Theory of Metals, Consultant I. Bureau, ISBN 030-610-8739, New York (1973).

D. Shoenberg, Magnetic oscillations in metals, Cambridge University Press (1984).

В. Л. Гинзбург, УФН, 169, 4, стр. 419 (1999).

I. Dubrovskyi, Condensed Matter Physics, 9: 23 (2006).

I. Dubrovskyi, Condensed Matter Physics,11: 585 (2008).

I. Dubrovskyi, Thermodynamics – Interaction Studies – Solids, Liquids and Gases, Juan Carlos Moreno-Pirajan (Ed.), Ch.17, pp. 445-468, ISBN: 978-953-307-563-1, InTech (2011); http://dx.doi.org/10.5772/19645

I. Dubrovskyi, Condensed Matter Physics,16, No 1, 13001: 1 - 10 (2013).

Khinchin, A. Y., Mathematical Foundation of Statistical Mechanics, Ed. Dover, New York (1949).

Khinchin, A. Y., Mathematical Foundation of Quantum Statistics,Ed. Dover, New York (1960).

S. Lundqvist& N. H. March, Theory of the inhomogeneous electron gas, Plenum Press. New York and London (1983).

И. М. Дубровский, Теория электронных явлений в деформированных кристаллах, РИО ИМФ, Киев (1999).

A. Kratzer und W. Franz, TranszendenteFunktionen, AkademischeVerlagsgesellschaft. Leipzig (1960).

G. N. Watson, A Treatise on the theory of Bessel functions, University Press. Cambridge (1966).


Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Boson Journal of Modern Physics

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright. 2016 Boson Journal of Modern Physics. All rights reserved.

ISSN: 2454-8413.

For any help/support contact us at editorial@scitecresearch.com.