Solving the recognition problem of Lorenz braids via matrices of inversions for permutations
Abstract
Keywords
Full Text:
PDFReferences
K. Murasugi ìKnot theory and its applicationsî , Birkhauser Boston, 1996.
R. F. Williams "The structure of Lorenz attractors", Spriger-Verlag Lecture Notes No. 615, 94-115, 1979.
J. S. Birman and R. F. Williams "Knotted Periodic Orbits in Dynamical SystemsI: LorenzÃs Equations", Topology 22, No. 1, 47-82, 1983.
J. S. Birman "Lorenz knots" arXiv:1201.0214 [math.GT],
https://arxiv.org/abs/1201.0214.
R. Williams, "Lorenz knots are prime", Ergodic Theory Dynamical Systems 4, 147-163, 1983.
R. Razumovsky "Grid diagrams of Lorenz links", Journal of Knot Theory and Its RamiÖcations, Vol. 19, No. 6 (2010) 843ñ847, World ScientiÖc Publishing Company, DOI: 10.1142/S0218216510008170, 2010.
E. Ghys "Knots and dynamics" In: International Congress of Mathematicians. Vol. I: European Mathematical Society, Z‹rich, pp. 247ñ277, 2007.
E. A. Elifai, "Necessary and su¢ cient conditions for Lorenz knots to be closed under satellite construction" , Chaos Solitons Fractals 10, 137ñ146, 1999.
E. A. Elrifai, M. Anis, "Positive permutation braids and permutation inversions with some applications" Journal of knot theory and its ramiÖcations, Vol. 21, No. 10, 2012.
E. A. Elrifai, Redha. A. Alghamdi, "Basis of Hecke algebras - associated to Coxeter groups - via matrices of inversion for permutations" Journal of Advances in Mathematics, Vol 12, No 4, 6127-6132, 2016.
J. S. Birman and I. Kofman "A new twist in Lorenz links", Journal of Topology, No. 1, 1-22, 2009.
Refbacks
- There are currently no refbacks.
Copyright (c) 2016 Journal of Progressive Research in Mathematics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright © 2016 Journal of Progressive Research in Mathematics. All rights reserved.
ISSN: 2395-0218.
For any help/support contact us at editorial@scitecresearch.com, jprmeditor@scitecresearch.com.