Fixed Point Theorems in Ordered Generalized Metric Spaces with Integral Type

Anil Rajput, Rashmi Gupta, Rucha Athaley, Hotam Singh Jatav

Abstract


In this paper, we prove fixed point theorems for weakly compatible self   mappings satisfying certain contractive conditions of integral type in G-metric spaces. 


Keywords


Weakly compatible mapping,G-metric space, common fixed point, Integral type

Full Text:

PDF

References


Agarwal, RP, El-Gebeily, MA: O’Regan D: Generalized contractions in partially ordered metric spaces. Appl Anal. 87, 1–8(2008). doi:10.1080/00036810701714164

Branciari, A: A fixed point theorem for mappings satisfying a general contractive condition of integral type, Int.J. Math. Math. Sci. 29(9), 531-536 (2002)

Liu, Z, Li, J, Kang, SM: Fixed point theorems of contractive mappings of integral type. Fixed Point Theory Appl. 2013, Article ID 300 (2013).

Liu, Z, Wu, H, Ume, JS, Kang, SM: Some fixed point theorems for mappings satisfying contractive conditions of integral type. Fixed Point Theory Appl. 2014, Article ID 69 (2014)

Liu, Z, Han, Y, Kang, SM, Ume, JS: Common fixed point theorems for weakly compatible mappings satisfying contractive conditions of integral type. Fixed Point Theory Appl. 2014, Article ID 132 (2014)

Nieto, JJ, López, RR: Contractive mapping theorems in partially ordered sets and pplications to ordinary differential equations. Order. 22, 223–239 (2005). doi: 10.1007/s11083-005-9018-5

Nieto, JJ, López, RR: Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations. Acta Math Sinica Engl Ser. 23(12):2205–2212 (2007). doi:10.1007/s10114-005-0769-0

O’Regan, D, Petrutel, A: Fixed point theorems for generalized contractions in ordered metric spaces. J Math Anal Appl.341, 241–1252 (2008)

Ran, ACM, Reuring, MCB: A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Am MathSoc132,1435-1443(2004),doi:10,1090/S002-9939-03—07220-4


Refbacks

  • There are currently no refbacks.


Copyright (c) 2016 Journal of Progressive Research in Mathematics

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright © 2016 Journal of Progressive Research in Mathematics. All rights reserved.

ISSN: 2395-0218.

For any help/support contact us at editorial@scitecresearch.com, jprmeditor@scitecresearch.com.