Differential Sandwich Theorems for p-valent Analytic Functions Defined by Cho–Kwon–Srivastava Operator

Badriah Alamri

Abstract


By using of Cho–Kwon–Srivastava operator, we obtain some subordinations and superordinations results for certain normalized p-valent an­alytic functions.

Keywords


Analytic function; Hadamard product; differential subordination; superordination; linear operator.

Full Text:

PDF

References


R. M. Ali, V. Ravichandran, M. H. Khan, and K. G. Subramanian, Differential sandwich theorems for certain analytic functions, Far East J. Math. Sci. (FJMS) 15 (2004), no.1, 87-94.

Aouf, M. K. and El-ashah,R.M. , Differential Sandwich Theorems for Analytic Functions Defined by Cho–Kwon–Srivastava Operator ,Anal. univ. Mariae Curie ,Polonia , Vol.LXIII (2009),17-27.

Bernardi, S. D., Convex and starlike univalent functions, Trans. Amer. Math. Soc. 135 (1969), 429–446.

Bulboac˘a, T., A class of first-order differential superordination, Demonstratio Math. 35, no. 2 (2002), 287–292.

Bulboac˘a, T., Differential Subordinations and Superordinations, Recent Results, House of Scientific Book Publ., Cluj-Napoca, 2005.

Cho, N. E., Kwon, O. S. and Srivastava, H. M., Inclusion relationships and argument properties for certain subclasses of multivalent functions associated with a family of linear operators, J. Math. Anal. Appl. 292 (2004), 470–483.

Choi, J. H., Saigo, M. and Srivastava, H. M., Some inclusion properties of a certain family of integral operators, J. Math. Anal. Appl. 276 (2002), 432–445.

Geol, R.M. and Sohi, N.S., Anew criterion for p-valent functions, Proc. Amer. Math. Soc.78(1980),353-357.

Miller, S. S., Mocanu, P. T., Differential Subordination Theory and Application,Marcel Dekker ,New York,2000.

Miller, S. S., Mocanu, P. T., Subordinant of differential superordinations, Complex Var. Theory Appl. 48,no.10(2003) , 815-826.

Murugusundaramoorthy, G., Magesh, N., Differential subordinations and superordi¬nations for analytic functions defined by Dziok–Srivastava linear operator, JIPAM. J. Inequal. Pure Appl. Math. 7, no. 4 (2006), Art. 152, 9 pp.

Murugusundaramoorthy, G., Magesh, N., Differential sandwich theorem for analytic functions defined by Hadamard product, Ann. Univ. Mariae Curie-Skłodowska Sect. A 61 (2007), 117–127.

Noor, K. I., Noor, M. A., On integral operators, J. Math. Anal. Appl. 238 (1999),341-352 .

Shanmugam, T. N., Ravichandran, V. and Sivasubramanian, S., Differential sand¬wich theorems for same subclasses of analytic functions, Aust. J. Math. Anal. Appl. 3, no. 1 (2006), Art. 8, 11 pp.


Refbacks

  • There are currently no refbacks.


Copyright (c) Journal of Progressive Research in Mathematics

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright © 2016 Journal of Progressive Research in Mathematics. All rights reserved.

ISSN: 2395-0218.

For any help/support contact us at editorial@scitecresearch.com, jprmeditor@scitecresearch.com.