Differential Sandwich Theorems for p-valent Analytic Functions Defined by Cho–Kwon–Srivastava Operator
Abstract
Keywords
Full Text:
PDFReferences
R. M. Ali, V. Ravichandran, M. H. Khan, and K. G. Subramanian, Differential sandwich theorems for certain analytic functions, Far East J. Math. Sci. (FJMS) 15 (2004), no.1, 87-94.
Aouf, M. K. and El-ashah,R.M. , Differential Sandwich Theorems for Analytic Functions Defined by Cho–Kwon–Srivastava Operator ,Anal. univ. Mariae Curie ,Polonia , Vol.LXIII (2009),17-27.
Bernardi, S. D., Convex and starlike univalent functions, Trans. Amer. Math. Soc. 135 (1969), 429–446.
Bulboac˘a, T., A class of first-order differential superordination, Demonstratio Math. 35, no. 2 (2002), 287–292.
Bulboac˘a, T., Differential Subordinations and Superordinations, Recent Results, House of Scientific Book Publ., Cluj-Napoca, 2005.
Cho, N. E., Kwon, O. S. and Srivastava, H. M., Inclusion relationships and argument properties for certain subclasses of multivalent functions associated with a family of linear operators, J. Math. Anal. Appl. 292 (2004), 470–483.
Choi, J. H., Saigo, M. and Srivastava, H. M., Some inclusion properties of a certain family of integral operators, J. Math. Anal. Appl. 276 (2002), 432–445.
Geol, R.M. and Sohi, N.S., Anew criterion for p-valent functions, Proc. Amer. Math. Soc.78(1980),353-357.
Miller, S. S., Mocanu, P. T., Differential Subordination Theory and Application,Marcel Dekker ,New York,2000.
Miller, S. S., Mocanu, P. T., Subordinant of differential superordinations, Complex Var. Theory Appl. 48,no.10(2003) , 815-826.
Murugusundaramoorthy, G., Magesh, N., Differential subordinations and superordi¬nations for analytic functions defined by Dziok–Srivastava linear operator, JIPAM. J. Inequal. Pure Appl. Math. 7, no. 4 (2006), Art. 152, 9 pp.
Murugusundaramoorthy, G., Magesh, N., Differential sandwich theorem for analytic functions defined by Hadamard product, Ann. Univ. Mariae Curie-Skłodowska Sect. A 61 (2007), 117–127.
Noor, K. I., Noor, M. A., On integral operators, J. Math. Anal. Appl. 238 (1999),341-352 .
Shanmugam, T. N., Ravichandran, V. and Sivasubramanian, S., Differential sand¬wich theorems for same subclasses of analytic functions, Aust. J. Math. Anal. Appl. 3, no. 1 (2006), Art. 8, 11 pp.
Refbacks
- There are currently no refbacks.
Copyright (c) Journal of Progressive Research in Mathematics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright © 2016 Journal of Progressive Research in Mathematics. All rights reserved.
ISSN: 2395-0218.
For any help/support contact us at editorial@scitecresearch.com, jprmeditor@scitecresearch.com.