Implicative algebras and Heyting algebras can be residuated lattices
Abstract
Keywords
Full Text:
PDFReferences
K. Blount and C. Tsinakis, The structure of residuated lattices, Internat. J. Algebra Comput., 13, 4 (2003) : 437-461.
P. Jipsen and C. Tsinakis, A survey of residuated lattices, Ordered Algebraic Structures (J. Martinez, editor), Kluwer Academic Publishers, Dordrecht, (2002) : 19-56.
Y. B. Jun, Y. Xu and K. Qin. Positive implication and associative filters of lattice implication algebras. Bull. Korean Math. Soc., 35, 1 (1998) : 53-61.
V. Kolluru, B. Bekele. Implicative algebras. Mekelle University, 11, (2012) : 90-101.
M. Ward, R.P. Dilworth, Residuated lattices, Transactions of the AMS, 45, (1939) : 335-354.
Y. Xu. Lattice implication algebras. J. South West Jiaotong University, 28, 1 (1993) : 20-27.
Zhu Yiquan and Tu Wenbiao. A note on lattice implication algebras. Bull. Korean Math. Soc., 38, 1 (2001) : 191-195.
Refbacks
- There are currently no refbacks.
Copyright (c) 2017 Journal of Progressive Research in Mathematics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright © 2016 Journal of Progressive Research in Mathematics. All rights reserved.
ISSN: 2395-0218.
For any help/support contact us at editorial@scitecresearch.com, jprmeditor@scitecresearch.com.