Unit step and impulse function equations to simplify the solution of engineering problems
Abstract
Keywords
Full Text:
PDFReferences
B. Engquist, A. K. Tornberg and R. Tsai, Discretization of Dirac delta functions in level set methods, Journal of Computational Physics archive, Vol. 207 Issue 1, July( 2005), pages 28-51.
X. Xu, Nonlinear trigonometric approximation and the Dirac delta function, Journal of Computational and Applied Mathematics 209 (2006) 234 – 245.
P. Smereka, The numerical approximation of a delta function with application to level set methods. Journal of Computational Physics 211 (2006) 77–90.
C. Min and F. Gibou, Robust second-order accurate discretizations of the multi-dimensional Heaviside and Dirac delta functions, Journal of Computational Physics archive, Vol. 227, Issue 22, Nov. (2008),
pages 9686-9695.
M. Jauregui and C. Tsallis, New representations of π and Dirac delta using the nonextensive-statisticalmechanics q-exponential function, Journal of Mathematical Physics 51, 063304, (2010).
A. Chevreuil, A. Plastino, and C. Vignat, On a conjecture about Dirac´s delta representation using qexponentials, Journal of Mathematical Physics 51, 093502,( 2010).
Y.T. Li and R. Wong, Integral and Series Representations of the Dirac Delta Function, Communications on Pure and Applied Analysis, (2013). arXiv:1303.1943[math.CA].
L. Schwartz, Théorie des distributions, Paris, Hermann, (1966).
M. A. Al-Gwaiz, Theory of distributions, CRC Press, (2012).
E. Chicurel-Uziel, Dirac delta representation by exact parametric equations. Application to impulsive vibration systems, J. of Sound and Vibration, Vol. 305,134, (2007).
E. Chicurel-Uziel and F. A. Godínez-Rojano, F. A.,(2015) Parametric Dirac delta to simplify the solution of linear and nonlinear problems with an impulsive forcing function, Journal of Applied Mathematics and Physics, Vol. 1, 16-25. http://dx.doi.org/10.4236/jamp.(2013).17003
E. Chicurel-Uziel and F. A. Godínez-Rojano, (2015) Parametrization to improve the Solution Accuracy of Problems Involving the Bi-Dimensional Dirac Delta in the Forcing Function, Journal of Applied Mathematics and Physics, 3,1168-1177. http://dx.doi.org/10.4236/jamp.(2015).39144
R. Haberman, Applied Partial Differential Equations, 4th Ed., Pearson, Prentice Hall, Upper Saddle River, New Jersey, US, (2004), pages 51-53.
Refbacks
- There are currently no refbacks.
Copyright (c) 2018 Journal of Information Sciences and Computing Technologies
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright © 2014 Journal of Information Sciences and Computing Technologies. All rights reserved.
ISSN: 2394-9066
For any help/support contact us at jiscteditor@scitecresearch.com.