EPR, optical absorption and superposition model studies of Cr3+

Ram Kripal, Awadhesh Kumar Yadav

Abstract


Electron paramagnetic resonance (EPR) study of Cr3+ doped cesium tetrabromozincate (CTBZ) single crystal is done at room temperature. The hyperfine structure for Cr53 isotope is also obtained. Two magnetically inequivalent sites for Cr3+ are observed. The spin Hamiltonian parameters are evaluated as: D = 234×10-4cm-1, E = 69×10-4cm-1, g = 2.0104, A = 80×10-4 cm-1 for site I and D = 235×10-4 cm-1, E = 70×10-4cm-1, g = 2.0061, A = 82×10-4cm-1 for site II, respectively. The optical absorption spectra are recorded at room temperature. The energy values of different orbital levels are determined. The values of various parameters obtained are: B = 602 cm-1, C = 2504 cm-1, Dq = 1870 cm-1, h = 1.63 and k = 0.21, where B and C are Racah parameters, Dq is crystal field parameter, and h and k are nephelauxetic parameters, respectively. Theoretical zero-field splitting (ZFS) parameters for Cr3+ at two sites in CTBZ are evaluated using superposition model and microscopic spin Hamiltonian theory. The theoretical ZFS parameters are in good agreement with the experimental values.


Keywords


A. Inorganic compounds; B. Crystal Growth; D. Crystal Fields; D. Electron Paramagnetic Resonance; D. Optical Properties.

Full Text:

PDF

References


W. C. Zheng, S. Y. Wu, D. Hui-Ning, Z. Jian, Spectrochem. Acta A 58(2002)537-541.

M. Casalboni, V. Ciafardone, G. Giuli, B. Izzi, E. Paris, .Prosposito, J. Phys.: Condens. Matter 8(1996)9059-9070.

R. Jablonski, M. Palczewska, A. Pajaczkowska, J. Magn. Magn. Mater. 167(1997)99-104.

M. G. Zhao, Y. Lei, J.Phys.: Condens. Matter 9 (1997)529-540.

P. Sambasiva Rao, S. Subramanian, Mol. Phys. 39 (1980) 935-943.

Z.Y. Yang, J. Phys.: Condens. Matter 12 (2000) 4091-4096.

M. A. El-Sayed, Proc. SPIE 0620, Laser Applications in Chemistry and Biophysics, 126 (June 30,1986); oi:10.1117/12.961137.

B. Morosin, E. C. Lingafelter, Acta Cryst. 12(1959) 744-745.

A. Abragam, B. Bleaney, EPR of Transition Ions, Clarendon Press, Oxford, 1970.

S. Stoll, A. Schweiger, J. Magn. Reson. 170(2006)42-55.

F. B. I. Cook, M. J. A. Smith, J. Phys. C: Solid State Phys.7 (1974) 2353-2364.

C. Rudowicz, R. Bramley, J. Chem. Phys. 83 (1985) 5192- 5197.

C. Rudowicz, Y. Y. Zhao, W. L. Yu, J. Phys. Chem. Solids 53 (1992)1227-1236.

D. S. Schonland, Proc. Phys. Soc. 73 (1958) 788-792

W. C. Zheng, S. Y. Wu, Phys. Stat. Solidi B 207 (1998) 429-435.

P. W. Atkins, T. L. Overton, J. P. Rourke, M. T. Weller, F. A. Armstrong, Inorganic Chemistry, 5th Ed., Oxford University Press, 2010.

R. J. Peruma Reddy, Coordin. Chem. Rev. 4 (1969)73-105.

Y. Tanabe, S. Sugano, J. Phys. Soc. Jpn. 9 (1954)753-766.

F. Rasheed, K. P. O Donnel, B. McCollum, B. Henderson, D. B. Hollis, J. Phys: Condens. Matter 3 (1991) 1915-1930.

C. E. Moore, Atomic Energy Levels, (Chromium through Niobium), National Bureau of Standard Circular No. 467, Vol. 2, US Government Printing Office, Washington, DC, 1948, 1952.

R. V. S. S. N. Ravi Kumar, A. V. Chandrasekhar, S. N. Rao, N. Madhu, B. J. Reddy, Cryst. Res. Technol. 34 (1999) 911-914.

K. T. Liu, J. T. Yu, S. H. Lou, C. H. Lee, Y. Huang, K. H. Li, J. Phys. Chem. Solids 55 (1994) 1221-1226.

W. Seeber, D. Ehrt, D. Eberdorff-Heidepriem, J. Non-Cryst. Solids 171 (1994) 94-104.

C. K. Jorgensen, Absorption Spectra and Chemical Bonding in Complexes, Plenum, Oxford, 62,p.113.

M. Haouari, H. B. Ouada, H. Maaref, H. Hommel, A. P. Legrand, J. Phys.: Condens. Matter 9 (1997) 6711-6718.

W. Ryba-Romanowski, S. Golab, W. A. Pisarski, D. Podsiadla, Z. Czapla, Chem. Phys. Lett. 264 (1997) 323-326.

W. Ryba-Romanowski, S. Golab, G. Dominiak-Dzik, W. A.Pisarski, D. Podsiadla, Z. Czapla, J. Mol. Struct. 450 (1998) 219-222.

B. N. Figgis, M. A. Hitchman, Ligand Field Theory and its Applications, Wiley- VCH, New York, 2000.

G. M. Cole Jr., B. B. Garret, Inorg. Chem. 9 (1970)1898-1902.

C. Rudowicz, C. Y. Chung, J. Phys.: Condens. Matter 16 (2004) 5825-5847; M. G. Brik, N. M. Avram (Eds.), Superposition Model and its applications in: Optical Properties of 3d-Ions in Crystals, Spectroscopy and Crystal Field Analysis, Springer, Heidelberg, 2013.

M. Acikgoz, Spectrochim. Acta A 86(2012) 417-422.

K. A. Muller, W. Berlinger, J. Phys. C: Solid State Phys. 16(1983) 6861-6874.

M. Acikgoz, P. Gnutek, C. Rudowicz, Solid State Commun. 150(2010) 1077-1081.

T. H. Yeom, Y. M. Chang, S. H. Choh, C. Rudowicz, Phys. Stat. Sol. b185 (1994), 409–41

T. H. Yeom, Y. M. Chang, C. Rudowicz, Solid State Commun. 87(1993) 245-249.

Y. Y. Yeung, C. Rudowicz, Y. M. Chang, J. Qin, J. Lumin. 60&61(1994) 108-111.

Y. Y. Yeung, D. J. Newman, Phys. Rev. B 34(1986)2258-2265.

Y. Y. Yeung, C. Rudowicz, Computers Chem. 16 (1992) 207-216.

Y. Y. Yeung, C. Rudowicz, J. Comput. Phys. 109 (1993) 150-152.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2015 Boson Journal of Modern Physics

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright. 2016 Boson Journal of Modern Physics. All rights reserved.

ISSN: 2454-8413.

For any help/support contact us at editorial@scitecresearch.com.