High dimensional Schwartz Caudrey-Dobb-Gibbon system: Painleve integrability and exact solutions

Bo Ren, Jun Yu, Zhi Mei Lou

Abstract


The usual (1+1)-dimensional Schwartz Caudrey-Dobb-Gibbon equation is extended to the
general (n+1)-dimensional system. A singularity structure analysis for the extension system
is carried out. It demonstrates that the extension system admits the Painleve property. The
exact solutions for the extension system are obtained with the Painleve-Backlund transformation.
In the meanwhile, some properties of the soliton solutions for the extension system
are shown by some figures


Keywords



Full Text:

PDF

References


Garnier, J., Kraenkel, R.A., Nachbin, A.: An optimal Boussinesq model for shallow water waves

interacting with a microstructure. Phys. Rev. E 76, 046311 (2007)

Shukla, P.K., Eliasson, B.: Nonlinear interactions between electromagnetic waves and electron plasma

oscillations in quantum plasmas. Phys. Rev. Lett. 99, 096401 (2007); Kamchatnov, A.M., Pitaevskii,

L.P., Stabilization of solitons generated by a supersonic flow of Bose-Einstein condensate past an

obstacle. Phys. Rev. Lett. 100, 160402 (2008); Lin, J., Ren, B., Li, H.M., Li, Y.S.: Soliton solutions

for two nonlinear partial differential equations using a Darboux transformation of the Lax pairs. Phys.

Rev. E 77, 036605 (2008)

Lou, S.Y., Lin, J., Yu, J.: (3+1)-dimensional integrable models under the meaning that they possess

infinite dimensional Virasoro-tpye symmetry algebra. Phys. Lett. A 201, 47 (1995); Lou S.Y., Hu,

X.B.: Infinitely many Lax pairs and symmetry constraints of the KP equation. J. Math. Phys. 38,

(1997)

Lou, S.Y.: Conformal invariance and integrable models. J. Phys. A: Math. Gen. 30, 4803 (1997)

Lou, S.Y., Xu, J.J.: Higher dimensional Painleve integrable models from the Kadomtsev-Petviashvili

equation. J. Math. Phys. 39, 5364 (1998); Lou, S.Y., Chen, C.L., Tang, X.Y.: (2+1)-dimensional

(M+N)-component AKNS system: Painleve integrability, infinitely many symmetries, similarity reductions

and exact solutions, J. Math. Phys. 43, 4078 (2002)

Lou, S.Y.: Searching for higher dimensional integrable models from lower ones via Painleve analysis.

Phys. Rev. Lett. 80, 5027 (1998)

Lin, J., Qian, X.M.: Higher dimensional integrable nodels with Conformal invariance. Commun. Theor.

Phys. 40, 259 (2003)

Toda, K., Yu, S.J.: A study of the construction of equations in (2+1) dimensions. Inverse Problems

, 1053 (2001)

Lou, S.Y.: KdV extensions with Painleve property. J. Math. Phys. 39, 2112 (1998)

Lou, S.Y.: High dimensional Schwartz KP equations. Z. Naturforsch. 55a, 401 (2000)

Ren, B., Lin, J.: Painleve properties and exact solutions for the high-dimensional Schwartz Boussinesq

equation. Chin. Phys. B 18, 1161 (2009)

Caudrey, P.J., Dodd, R.K., Gibbon, J.D.: A new hierarchy of Korteweg-de Vries equations. Proc. Roy.

Soc. Lond. A 351, 407 (1976); Dodd, P.K., Gibbon, J.D.: The prolongation strutrue of a higher-order

Korteweg-de Vries equations. Proc. Roy. Soc. Lond. A 358, 287 (1977)

Weiss, J.: The Painleve property for patial differential equation. J. Math. Phys. 24, 522 (1983); Weiss,

J.: The Painleve property for patial differential equation. II: Backlund transformation, Lax pairs, and

the Schwarzian derivative. J. Math. Phys. 24, 1405 (1983)

Jiang, B., Bi, Q.: A study on the bilinear Caudrey-Dodd-Gibbon equation. Nonlinear Analysis: Theory,

Methods Appl. 72, 4530 (2010)

Yu, X., Gao, Y.T., Sun, Z.Y., Liu, Y.: N-soliton solutions, Backlund transformation and Lax pair for

a generalized variable-coefficient fifth order Korteweg-de Vries equation. Phys. Scr. 81, 045402 (2010)

Salas, A.H., Hurtado, O.G., Castillo, J.E.: Computing multi-soliton solutions to Caudrey-Dodd-Gibbon

equation by Hirotas method. Int. J. Phys. Sci. 6, 7729 (2011)

Fan, E.G.: Multiple travelling wave solutions of nonlinear evolution equations using a unified algebraic

method, J. Phys. A: Math. Gen. 35, 6853 (2002)

Radha, R., Kumar, C.S., Lakshmanan, M., Tang, X.Y., Lou, S.Y.: Periodic and localized solutions of

the long wave short wave resonance interaction equation. J. Phys. A: Math. Gen. 38, 9649 (2005)

Lou, S.Y., Hu, H.C., Tang, X.Y.: Interactions among periodic waves and solitary waves of the (n+1)-

dimensional Sine-Gordon field. Phys. Rev. E 71, 036604 (2005)


Refbacks

  • There are currently no refbacks.


Copyright (c) 2015 Boson Journal of Modern Physics

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright. 2016 Boson Journal of Modern Physics. All rights reserved.

ISSN: 2454-8413.

For any help/support contact us at editorial@scitecresearch.com.